If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-141=0
a = 3; b = -6; c = -141;
Δ = b2-4ac
Δ = -62-4·3·(-141)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-24\sqrt{3}}{2*3}=\frac{6-24\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+24\sqrt{3}}{2*3}=\frac{6+24\sqrt{3}}{6} $
| 4*m+2*m=66 | | 5*m+4*m=72 | | 4.3*x=3.8 | | x^2+10x-49=0 | | 24=-2(m=3)+m | | 3x+5-6x=20 | | 4x^2-81x+162=0 | | 3p/5p+1/5(40-p)=0 | | 2x-6=-40 | | 10n+0.3=0.1+0.3 | | 2k^2-32k=58 | | 12x(6)=2 | | -2x^2-48x+86=0 | | -2x-48x+86=0 | | x2-6=-13 | | 4p^2-16p-132=0 | | 3w^2+36w-3=0 | | 7+9x=-101 | | -100=7+9x | | x-7/7=3 | | d^2+2d-5=0 | | -22=k+(-33) | | x^2-26x-49=0 | | 16x2−81=0 | | 3g^2+48g+105=0 | | X^2-2=8+3x | | u^2-26u+10=0 | | (Y+1)=2(x-1) | | -2z^2+44z+42=0 | | S=3f-25 | | 200=0.50x-12x | | 3y+2y-y=0 |